Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells.

نویسندگان

  • Alon Peltz
  • Shariq I Sherwani
  • Sainath R Kotha
  • Jessica N Mazerik
  • Elizabeth S O'Connor Butler
  • M Lakshmi Kuppusamy
  • Thomas Hagele
  • Ulysses J Magalang
  • Periannan Kuppusamy
  • Clay B Marsh
  • Narasimham L Parinandi
چکیده

Earlier, we reported that mercury, the environmental risk factor for cardiovascular diseases, activates vascular endothelial cell (EC) phospholipase D (PLD). Here, we report the novel and significant finding that calcium and calmodulin regulated mercury-induced PLD activation in bovine pulmonary artery ECs (BPAECs). Mercury (mercury chloride, 25 microM; thimerosal, 25 microM; methylmercury, 10 microM) significantly activated PLD in BPAECs. Calcium chelating agents and calcium depletion of the medium completely attenuated the mercury-induced PLD activation in ECs. Calmodulin inhibitors significantly attenuated mercury-induced PLD activation in BPAECs. Despite the absence of L-type calcium channels in ECs, nifedipine, nimodipine, and diltiazem significantly attenuated mercury-induced PLD activation and cytotoxicity in BPAECs. This study demonstrated the importance of calcium and calmodulin in the regulation of mercury-induced PLD activation and the protective action of L-type calcium channel blockers against mercury cytotoxicity in vascular ECs, suggesting mechanisms of mercury vasculotoxicity and mercury-induced cardiovascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

The roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta

Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...

متن کامل

Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress.

Currently, mercury has been identified as a risk factor of cardiovascular diseases among humans. Here, the authors tested the hypothesis that mercury modulates the activity of the endothelial lipid signaling enzyme, phospholipase D (PLD), which is an important player in the endothelial cell (EC) barrier functions. Monolayers of bovine pulmonary artery ECs (BPAECs) in culture, following labeling...

متن کامل

Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin.

The present study was undertaken to characterize neuronal activity-dependent expression and release of vascular endothelial growth factor (VEGF) from rat hippocampal neurons and its contribution to neuronal functions. Increased levels of VEGF164 mRNA were evident both in cultured neurons and slices, but not astrocytes, following membrane depolarization with KCl. Activity-dependent expression of...

متن کامل

CaM kinase IIalpha mediates norepinephrine-induced translocation of cytosolic phospholipase A2 to the nuclear envelope.

Several growth factors, hormones and neurotransmitters, including norepinephrine, increase cellular calcium levels, promoting the translocation of cytosolic phospholipase A(2) to the nuclear envelope. This study was conducted to investigate the contributions of the calcium-binding protein calmodulin and of calcium-calmodulin-dependent protein kinase II to cytosolic phospholipase A(2) translocat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of toxicology

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2009